Abstract

Tuning intermediate adsorption energy by shifting the d-band center offers a powerful strategy to tailor the reactivity of metal catalysts. Here we report a potential sweep method to grow Pd layer-by-layer on Au with the capability to in situ measure the surface structure through an ethanol oxidation reaction. Spectroscopic characterizations reveal charge-transfer induced valence band restructuring in the Pd overlayer, which shifts the d-band center away from the Fermi level compared to bulk Pd. Precise overlayer control gives the optimal bimetallic surface of two monolayers (ML) Pd on Au, which exhibits more than 370-fold mass activity enhancement in oxygen reduction reaction (at 0.9 V vs. reversible hydrogen electrode) and 40 mV increase in half-wave potential compared to the Pt/C. Tested in a homemade Zn-air battery, the 2-ML-Pd/Au/C exhibits a maximum power density of 296 mW/cm2 and specific activity of 804 mAh/gZn, much higher than Pt/C with the same catalyst loading amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call