Abstract

Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional “grafting to” polymer–biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.