Abstract

Large-scale cell culture for cell expansion in tissue engineering is currently a major focus of research. One method to achieve better cell amplification is to utilize microcarriers. In this study, different amounts of poly(γ-benzyl-l-glutamate) (PBLG) (from 11 wt% to 50 wt%) were grafted on mesoporous hydroxyapatite (MHA) by the in situ ring opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA), and biodegradable and biocompatible PBLG-g-MHA microcarriers were directly fabricated using the oil-in-water (O/W) solvent-evaporation technique for bone tissue engineering. The amount of grafted PBLG could be controlled by adjusting the feed ratio of MHA and BLG-NCA. The relationships between sphere morphology and graft amount or solution concentration were explored. Furthermore, cytological assays were performed to evaluate the biological properties of the PBLG-g-MHA microcarriers. For a solution concentration of 3% (w/v) and PBLG graft amounts of 33 wt% and 50 wt%, the microspheres could be harvested with optimal spherical shapes. In vitro cell culture revealed that the PBLG-g-MHA microspheres had favorable properties for cell proliferation and significantly enhanced the osteogenic differentiation of MC3T3-E1 cells and bone matrix formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.