Abstract

Solid polymer electrolytes (SPEs) are considered one promising candidate for lithium metal batteries due to their high flexibility, low cost, and roll-to-roll scalability. However, conventional SPEs prepared via ex situ methods are confronted with challenges such as poor contact and high resistance at the electrode|SPE interface, as well as low ionic conductivity at room temperature. In this study, we developed a quasi-solid electrolyte (QSE) using an in situ polymerization approach, employing butyl acrylate as the monomer and incorporating NMP as an additive. Spectroscopic investigations and DFT calculations revealed that NMP tends to form an overleaf-structured [Li(NMP)3][TFSI] complex with LiTFSI, promoting lithium salt dissociation. Owing to this advantage, the QSE exhibits high room-temperature ionic conductivity (6.94 × 10−4 S cm−1) and an extensive electrochemical stability window (5.01 V vs. Li+/Li). Furthermore, the in situ polymerization method facilitates full contact at the interface, enhancing the interfacial stability and reducing the interface resistance, thus resulting in stable cycling of Li|Built-in QSE|Li symmetric cell for 1100 h at 0.1 mA cm−2. The assembled LiFePO4|Built-in QSE|Li cell also demonstrates excellent rate and long-term cycling performance. Our findings offer valuable insights into the interaction between organic additives and lithium salts and present a novel strategy for the development of polymer electrolytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call