Abstract

To improve the flame retardant performance of plywood and reduce the reagent loss and moisture absorption of the flame retardant, a bio-based supramolecular flame retardant is prepared by vacuum-pressure impregnation and high-temperature in situ polymerization in plywood. The best value of bonding strength appears at 170°C, and the limiting oxygen index (LOI) of 170BF-B plywood is 42.3%. After hot pressing, the moisture absorption rate of the 170BF-B veneer is only 18.51%, while the loss resistance rate achieves 83.45%. Its residue at 700°C is 91.36% higher than that of poplar veneer. In the combustion process, the peak value of heat release rate (PHRR) and heat release rate (HRR) of 170BF-B plywood are only 10.69% and 37.11% of that of untreated plywood. After combustion, an intumescent flame retardant layer exhibits a graphitization trend. In the flame retardant layer, there are not only functional groups, such as P═O, PO4 3- , POC decomposed by flame retardant but also characteristic functional groups of wood fiber, like C═O, CH, etc. The prepolymer BF-B, which is composed of phytic acid, urea, and dicyandiamide polymerized with chitosan or lignocellulose to form a supramolecular flame retardant connected with POC and PON functional groups, thus improving the flame retardant and anti-loss property by in situ polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.