Abstract
Cubic boron nitride (c-BN) was deposited on silicon substrates using electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) employing Ar–He–N2–H2–BF3 gas precursors at 780°C. In situ X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM) measurements indicated that c-BN nucleated and grew on a hexagonal boron nitride (h-BN) layer that initially formed on the substrate. The minimum and maximum bias applied to the sample that yielded c-BN growth was investigated by in situ XPS. Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), and XPS were employed to determine the chemical composition of the produced films, while XPS and in situ ultraviolet photoelectron spectroscopy (UPS) were employed to investigate the electronic structure of film surfaces. The bandgap of the c-BN films was estimated to be 6.2±0.2eV from XPS measurements. In situ UPS measurements indicated that as-deposited c-BN films exhibited a negative electron affinity (NEA). The surface continued to exhibit an NEA after H2 plasma treatment performed at 650°C and annealing at 780°C. Analysis of surface bonding using a surface dipole model suggests that H-terminated N surface sites could be responsible for the observed NEA character.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.