Abstract

Developing a suitable and low-cost co-catalyst is highly desired for promoting photocatalytic water splitting of H2 production. Herein, we adopted a simple in situ photodeposition strategy by coupling Mn0.5Cd0.5S with non-noble co-catalyst Ni2P to construct Ni2P/Mn0.5Cd0.5S composites and achieved obviously improved H2 amount (31.83 mmol/h/g) in visible-light region, which is nearly 2.8 times than that of pure Mn0.5Cd0.5S. Such photocatalytic performance is in a relatively superior position among MnxCd1−xS-based photocatalysts. The apparent quantum efficiency of Ni2P/Mn0.5Cd0.5S-7 composites reaches 32% at 420 nm. Through optical and photoelectrochemical measurements, a possible mechanism was proposed, it was found that the interface between metalloid Ni2P and Mn0.5Cd0.5S contacts closely, which facilitates transfer and separation of charge carriers, thus promotes the reduction of H+ to H2. This study provides a new design of cut-price, high-efficiency photocatalyst for H2 evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call