Abstract

A new synthesis approach for obtaining fluorescent carbon dots (CDs) based on UV irradiation of carbohydrates was developed. The photochemical synthesis pathway allows the formation of water soluble CDs of analytical usefulness within one min. CDs obtained by photochemical treatment from the sucrose/NaOH/poly(ethylene glycol) system are monodisperse with an average size of 8nm as determined by transmission electron microscopy. A dramatic increase in the CDs fluorescence (turn on) is observed when H2O2 is added. The decrease in CDs size occurring by the action of highly oxidant OH radicals gives rise to confinement of emissive energy traps and, in turn, to fluorescence enhancement. Antioxidants such as ascorbic acid and glutathione inhibit the photochemical reaction giving rise to a decrease in fluorescence of the CDs/H2O2 system (turn on–off). The detection limit was 5µM H2O2 and the repeatability expressed as the relative standard deviation was 3.8% (N=7). The photochemical synthesis of CDs allows building a green, low-cost, safe and fast assay for the detection of H2O2 and antioxidants. An application of the novel fluorescent nanoprobe to H2O2 detection in contact lens cleaning solutions is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.