Abstract

A heterostructured semiconductor-metal ZnO-Ag nanoparticle (NP) composite was constructed through a straightforward photocatalytic strategy by using UV irradiation of ZnO NPs and an aqueous solution of Ag precursor. The ZnO-Ag NP composites serve as an effective cathode-modifying layer in polymer solar cells (PSCs) with increased short-circuit current density owing to the light-trapping effect, and improved optical and electrical conductivity properties compared with pure ZnO NPs. The Ag NPs, which are photodeposited in situ on ZnO NPs, can act as effective antennas for incident light to maximize light harvesting and minimize radiative decay or nonradiative losses, consequently resulting in the enhanced photogeneration of excitons in PSCs. Systematic photoelectron and -physical investigations confirm that heterostructured ZnO-Ag NPs can significantly improve charge separation, transport, and collection, as well as lower charge recombination at the cathode interface, leading to a 14.0 % improvement in air-processed device power conversion efficiency. In addition, this processable, cost-effective, and scalable approach is compatible with roll-to-roll manufacturing of large-scale PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.