Abstract

Sulfur dioxide (SO2) is a key indicator for fault diagnosis in sulfur hexafluoride (SF6) gas-insulated equipment. In this work, an in situ photoacoustic detection system using an ultraviolet (UV) LED light as the excitation source was established to detect SO2 in high-pressure SF6 buffer gas. The selection of the SO2 absorption band is discussed in detail in the UV spectral regions. Based on the result of the spectrum selection, a UV LED with a nominal wavelength of 285 nm and a bandwidth of 13 nm was selected. A photoacoustic cell, as well as a high-pressure sealed gas vessel containing it, were designed to match the output optical beam and to generate a PA signal in the high-pressure SF6 buffer gas. The performance of the proposed system was assessed in terms of linearity and detection limit. An SO2 detection limit (1σ) of 0.17 ppm was achieved. Additionally, a correction method was supplied to solve PA signal derivation induced by pressure fluctuation. The method can reduce the derivation from about 5% to 1% in the confirmation experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.