Abstract

A rapid thermal anneal (RTA) is used to crystallize the plasma-enhanced chemical vapor deposition (PECVD) deposited hydrogenated amorphous silicon (a-Si:H) thin film to form the phosphorus-doped polysilicon passivated contact in tunnel oxide passivated contact (TOPCon) solar cells. The effects of annealing temperature, annealing time, cooling time, and the polysilicon thickness on the surface passivation are investigated. The primary advantage of the RTA is reducing the whole crystallization period to ~15 min, shorter than the conventional tube-furnace annealing period of >60 min. We find that the RTA is a robust method to prepare high-quality polysilicon passivated contact without introducing blistering when the thickness of the a-Si:H is less than 40 nm. The optimized RTA process leads to an implied open-circuit voltage (iVoc) of 712 mV and a single-sided dark saturation current density (J0,s) of 12.5 fA/cm2 in the as-annealed state, which is inferior to the surface passivation of the controlled one prepared by a tube furnace annealing. Fortunately, a subsequent Al2O3 capping hydrogenation improves the iVoc and J0,s to 727 mV and 4.7 fA/cm2, respectively. The champion conversion efficiency of 23.04% (Voc = 679.0 mV, Jsc = 41.97 mA/cm2 and FF = 80.86%) is achieved, which demonstrates the effectiveness of RTA for preparing a high-efficiency polysilicon passivated-contact solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call