Abstract
Several important reactions in organic chemistry thrive on stoichiometric formation of phosphine oxides from phosphines. To avoid the resulting burden of waste and purification, cyclic phosphine oxides were evaluated for new catalytic reactions based on in situ regeneration. First, the ease of silane-mediated reduction of a range of cyclic phosphine oxides was explored. In addition, the compatibility of silanes with electrophilic halogen donors was determined for application in a catalytic Appel reaction based on in situ reduction of dibenzophosphole oxide. Under optimized conditions, alcohols were effectively converted to bromides or chlorides, thereby showing the relevance of new catalyst development and paving the way for broader application of organophosphorus catalysis by in situ reduction protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.