Abstract
Novel integration of in situ near infrared (NIR) thermal imaging, vibrational Raman spectroscopy, and Fourier-transform infrared emission spectroscopy (FTIRES) coupled with traditional electrochemical measurements has been used to probe chemical and thermal properties of Ni-based, solid oxide fuel cell (SOFC) anodes operating with methane and simulated biogas fuel mixtures at 800 °C. Together, these three non-invasive optical techniques provide direct insight into the surface chemistry associated with device performance as a function of cell polarization. Specifically, data from these complementary methods measure with high spatial and temporal resolution thermal gradients and changes in material and gas phase composition in operando. NIR thermal images show that SOFC anodes operating with biogas undergo significant cooling (ΔT = -13 °C) relative to the same anodes operating with methane fuel (ΔT = -3 °C). This result is general regardless of cell polarization. Simultaneous Raman spectroscopic measurements are unable to detect carbon formation on anodes operating with biogas. Carbon deposition is observable during operation with methane as evidenced by a weak vibrational band at 1556 cm(-1). This feature is assigned to highly ordered graphite. In situ FTIRES corroborates these results by identifying relative amounts of CO2 and CO produced during electrochemical removal of anodic carbon previously formed from an incident fuel feed. Taken together, these three optical techniques illustrate the promise that complementary, in situ methods have for identifying electrochemical oxidation mechanisms and carbon-forming pathways in high temperature electrochemical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.