Abstract

AbstractIn situ (operando) electrochemical dilatometry (ECD) provides information on the expansion/shrinkage of an electrode during cell cycling. It is shown that the ECD signal can be used as descriptor to characterize the charge storage behavior of lithium and sodium ions in hard carbon electrodes. It is found that sodium storage in hard carbons occurs by a three‐step mechanism, namely I) insertion, II) pore filling, and III) plating. Step III can be seen from a sudden increase in electrode thickness for potentials below around 36 mV versus Na+/Na and is assigned to plating on the hard carbon surface. Interestingly, this last step is absent in the case of lithium which demonstrates that the storage behavior between both alkali metals is different. The plating mechanism is also supported by reference experiments in which bulk plating is enforced. Bulk plating on hard carbon electrodes can be detected more easily for sodium compared to lithium. It is also found that the type of binder strongly influences the dilatometry results. A comparison between the binders sodium salt of carboxymethyl cellulose and poly(vinylidene difluoride) shows that the use of the former leads to notably smaller first electrode expansion as well as a higher initial Coulomb efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.