Abstract

Multifunctional superamphiphobic cotton fabrics are in high demand. However, preparation of such fabrics is often difficult or complicated. Herein, a novel superamphiphobic fabric is constructed by a simple one-pot method with an in situ growth process. Under suitable alkaline conditions, dopamine (DA) can be oxidized to benzoquinone. Meanwhile, 3-aminopropyltriethoxysilane (APTES), 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS-17) molecules undergo the hydrolysis reaction and bond together. Besides, benzoquinone can react with APTES by Schiff base and hollow nanoclusters can be finally obtained because of the steric hindrance effect of benzene ring and long alkyl chain. Such nanoclusters are formed on the surface of fabric, which endows the fabric with extreme liquid repellence. The effects of pH value and DA concentration on the surface morphology and lyophobic properties of the fabric are systematically studied. The water and pump oil contact angles of the superamphiphobic fabric obtained under the optimal reaction conditions can reach 160 and 151°, respectively. The lyophobicity of the fabric is maintained even after undergoing various harsh tests, showing significant durability and stability. In addition, the superamphiphobic fabric exhibits good antifouling and strong buoyancy ability. The superamphiphobic fabric can load 35 and 27.4 times its own weight in water and oil, respectively, which shows great potential in the field of functional textiles such as swimming suits, protective clothing, and life jackets in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call