Abstract

Many of today's spaceraft have long mission lifetimes. Whatever the lubrication method selected, the initial lubricant charge is required to last the entire mission. Fluid lubricant losses are mainly due to evaporation, tribo-degradation, and oil creep out of the tribological regions. In the past, several techniques were developed to maintain the appropriate amount of oil in the system. They were based on oil reservoirs (cartridges, impregnated porous parts), barrier films, and labyrinth seals. Nevertheless, all these systems have had limited success or have not established a proven record for space missions. The system reported here provides to the ball-race contact fresh lubricant in-situ and on demand when the ball bearing is close to failure. The lubricant is stored in a porous cartridge attached to the inner or the outer ring of a ball bearing. The oil is released by heating the cartridge to eject oil, taking advantage of the greater thermal expansion of the oil compared to the porous network. The heating may be activated by torque increases that signal the depletion of oil in the contact. The low surface tension of the oil compared to the ball bearing material is utilized and the close proximity of the cartridge to the moving balls allows the lubricant to reach the ball-race contacts. This oil re-supply system avoided a mechanism failure, reduced torque to an acceptable level, and extended the life of the component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.