Abstract

In this study, a direct observation of a point contact area was conducted to understand the scuffing phenomenon. The contact area was produced between a rotating sapphire disc and a stationary steel ball and it was lubricated using n-hexadecane. The image detected by a colour digital CCD camera, load, and friction were synchronously recorded by a computer during the test. It was found that wear debris produced in the contact area played an important role in the wear process, which includes running-in and scuffing. In the test, debris particles accumulated in the inlet zone, and some particles entered the contact area to cause abrasive wear of the ball surface, even in the light-load stages. During the running-in process, the abrasive wear by debris particles changed the conformity between the sliding surfaces. In the high-load stage, just before the occurrence of scuffing, the whole contact area was flattened at once. When scuffing occurred, the contact area suddenly expanded. The conformity of the contact area was dramatically changed during its expansion. The flattening of the whole contact area and dramatic expansion with changing the conformity seemed to play important roles in scuffing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.