Abstract

AbstractBaddeleyite (ZrO2) is used to infer shock pressures and understand the impact history of planetary bodies. Although the high‐pressure phase transition behavior of baddeleyite has been intensively investigated under hydrostatic conditions, there is little information on the dynamic response of phase transitions under shock‐loading conditions. We performed in situ X‐ray diffraction measurements on shock‐loaded baddeleyite using a synchrotron X‐ray pulse at beamline NW14A of the Photon Factory Advanced Ring, High Energy Accelerator Research Organization (KEK), Japan. A phase transition from monoclinic to orthorhombic‐I ZrO2 occurs at 3.3 GPa during shock compression and immediately returns to the monoclinic phase during subsequent release. Orthorhombic‐II ZrO2 is not observed up to 15 GPa. This study refines the phase transition behavior of baddeleyite under shock conditions up to 15 GPa, and the phase transition boundary is determined from direct observations. These findings improve the understanding of the shock history of planetary bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.