Abstract
The construction of twin boundaries (TBs) in materials is a remarkable way of promoting their strength and ductility. However, the effects of TB orientation on the mechanical properties have not been reported experimentally so far. Using a state-of-the-art in situ tensile stage equipped in a transmission electron microscope, uniaxial tensile tests were performed on three single-crystalline Ni samples with TB parallel and perpendicular to the tensile direction and no TB. The results showed that the uniform tensile elongation strongly depends on TB, 120% for the perpendicular TB sample, 99% for the parallel TB sample, and only 55% for the no TB sample. In addition, dislocation interaction before reaching the perpendicular CTB contribute to cross-slip and dynamic formation of dislocation jogs, thereby improving strain hardening and resulting in a large uniform tensile elongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.