Abstract

Retained austenite (RA) transformation and its role in the mechanical properties of three low-carbon micro-alloyed quenching and partitioning (Q&P) steels was investigated utilizing in situ tensile tests and electron microscopy. Meanwhile, RA’s strain-induced martensite transformation (SIMT) was analyzed and discussed in terms of the strengthening mechanism. The results show that the ductility of the Q&P steels relies on the size and morphology of RA. In addition, both affect RA’s mechanical or thermostability. Dislocation density and carbon trapping should be considered in estimating the yield strength in the two-step Q&P process. V and Nb-Ti elements promote the formation of blocky RA. Ti accelerates the formation of film-like RA. For experimental Q&P steels with different processes and compositions, the true stress always keeps a linear relationship with the amount of transformed martensite, i.e., 30.38~46.37 MPa per vol. 1% transformed martensite, during the in situ tensile deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.