Abstract

Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.