Abstract
Metallic nanowires (NW) usually exhibit unique physical, mechanical, and chemical properties compared to their bulk counterparts. Despite extensive research on their mechanical behavior, the atomic-scale deformation mechanisms of metallic nanowires remain incompletely understood. In this study, we investigate the deformation behavior of Au nanowires embedded with a longitudinal twin boundary (TB) under different loading rates using in situ nanomechanical testing integrated with atomistic simulations. The Au nanowires exhibit a recoverable bending strain of up to 27.5% with the presence of TBs. At low loading rates, the recoverable bending is attributed to the motion of stacking faults (SFs) and their interactions with TBs. At higher loading rates, the formation of high-angle grain boundaries and their reversible migration become dominant in Au nanowires. These findings enhance our understanding of the bending behavior of metallic nanowires, which could inspire the design of nanodevices with improved fatigue resistance and a large recoverable strain capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.