Abstract

In-situ observation was conducted on an operating polymer electrolyte fuel cell with a combined method of small-angle neutron scattering (SANS) and neutron radiography (NR). The combined measurement system has been recently developed to visualize water in a wide length scale from nano- to millimeter and successfully detected a spatial distribution of the water generated in individual cell elements; NR macroscopically detected the water in a gas diffusion layer and a flow-field, whereas SANS microscopically did in a membrane electrode assembly. In particular SANS was found to be a strong tool to make a rather precise analysis on the water content inside of ion conducting channels of polymer electrolyte membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.