Abstract

Eighty-five D-rich carbonaceous particles were identified in the matrix of the NWA 801 CR2 chondrite using isotope microscopy. The occurrence of 67 D-rich carbonaceous particles was characterized using secondary electron microscopy combined with X-ray elemental mapping. The close association of H and C, and D-enrichment suggests that the D-rich carbonaceous particles correspond to organic matter. The D-rich organic particles were scattered ubiquitously throughout the matrix at a concentration of approximately 660ppm. The morphology of the D-rich carbonaceous particles is globular up to about 1μm in diameter and is classified into four types: ring globules, round globules, irregular-shaped globules, and globule aggregates. The ring globules are ring-shaped organic matter containing silicate and/or oxide, with or without a void in the center. This is the first report of silicate and oxide grains surrounded by D-rich organic matter. The globule aggregates are composed of several D-rich organic globules mixed with silicates. Morphology of ring globules is very similar to core-mantle grain produced in the molecular cloud or in the outer solar nebula inferring by astronomy, suggesting that the organic globules have formed by UV photolysis in the ice mantle. Silicates or oxides attached to D-rich organic globules are the first observation among chondrites so far and may be unique nature of CR2 chondrites. The hydrogen isotopic compositions of the ring globules, round globules, irregular-shaped globules, and globule aggregates are δD=3000–4800, 2900–8100, 2700–11,000, and 2500–11,000‰, respectively. Variations of D/H ratio of these organic globules seemed to be attributed to variations of D/H ratio of the organic radicals or differences of content of the D-rich organic radicals. There are no significant differences in the hydrogen isotopic compositions among the four types of D-rich carbonaceous matter. The D-enrichments suggest that these organic globules have formed in a cold molecular cloud and/or the outer protoplanetary disk of the early solar system. The oxygen isotopic compositions of the silicates and oxides attached to the ring globules and globule aggregates range from δ17O=−49 to 50‰ and δ18O=−46 to 64‰. The oxygen isotopic compositions are not distinct from those of solar system materials, which suggests that the organic globules were formed in the outer solar system rather than in the presolar environment. Therefore, it is possible that the ring globules and globule aggregates in NWA 801 may have formed in the outer protoplanetary disk of the early solar system. Organic globules that exhibit clear presolar origin were not identified in this study. The lack of clear presolar signatures might suggest that modifications of isotopic compositions or morphologies of the presolar organic matter occurred in the early solar nebula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.