Abstract

In this article, we investigate defect nucleation leading to device degradation in $\beta $ -Ga2O3 Schottky barrier diodes by operating them inside a transmission electron microscope. Such in situ approach allows simultaneous visualization and quantitative device characterization, not possible with the current art of postmortem microscopy. High current density and associated mechanical and thermal fields are shown to induce different types of crystal defects, from vacancy cluster and stacking fault to microcrack generation prior to failure. These structural defects can act as traps for carrier and cause device failure at high biasing voltage. Fundamental insights on nucleation of these defects and their evolution are important from materials reliability and device design perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.