Abstract

The potential of high-resolution solid-state NMR spectroscopy for kinetic and mechanistic studies of hydrocarbon conversion on solid acid catalysis between 20 and 300°C is considered. The use of this technique is illustrated by the elucidation of the mechanisms of hydrogen exchange and 13C label transfer in alkanes and olefins, n-butane isomerization on sulfated zirconia, and ethane aromatization on zinc-containing zeolite beta. The kinetic parameters determined in these studies provide a basis for quantum chemical calculations of possible hydrocarbon activation and conversion pathways and for evaluating the reliability and accuracy of these theoretical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call