Abstract

Chemotherapy often experiences several challenges including severe systemic toxicity and adverse effects. The combination chemotherapy arose as an effective clinical practice aimed at reducing doses of drugs to achieve synergistic actions with low toxicity. Our recent efforts demonstrated a synergistic therapeutic benefit of gambogic acid (GA) and gemcitabine (Gem) against lung cancer. However, simultaneous delivery of these two drugs at the tumor site is highly challenging. Therefore, the development of an injectable formulation that can effectively deliver both hydrophobic (GA) and hydrophilic (Gem) drugs in one formulation is a clinically unmet need. Herein, this study reports an in situ human serum albumin (HSA)- and tannic acid (TA)-mediated complexed GA and Gem nanoparticles (G-G@HTA NPs). G-G@HTA NP formation was confirmed by the particle size, Fourier transform infrared spectroscopy, and 1H NMR spectroscopy. The superior therapeutic activity of G-G@HTA NPs was demonstrated by multiple in vitro functional assays. Additionally, G-G@HTA NPs revealed an obvious and precise targeting of tumors in vivo. The promoted and more synergistic anti-tumor efficacy of G-G@HTA NPs was attained than that of combined treatments and single drug treatments. These events have resulted in no apparent systemic and organ toxicities. Together, this study suggests that in situ HSA-TA-based combinatorial treatment strategy is a suitable approach for application in lung cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.