Abstract

Hydrothermal multiwall closed carbon nanotubes are shown to contain an encapsulated multiphase aqueous fluid, thus offering an attractive test platform for unique in situ nanofluidic experiments in the vacuum of a transmission electron microscope. The excellent wettability of the graphitic inner tube walls by the aqueous liquid and the mobility of this liquid in the nanotube channels are observed. Complex interface dynamic behavior is induced by means of electron irradiation. Strong atomic-scale interactions between the entrapped liquid phase and the wetted terminated graphite layers are revealed by means of high-resolution electron microscopy. The documented phenomena in this study demonstrate the potential of implementing such tubes in future nanofluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.