Abstract

Bismuth-based metal-organic frameworks (Bi-MOFs) have emerged as important photocatalysts for pollutant degradation applications. Understanding the photocatalytic degradation mechanism is key to achieving technological advantage. Herein, we apply dark-field optical microscopy (DFM) to realize in situ multicolor imaging of the photocatalytic degradation process of permanganate (MnO4-) on single CAU-17 Bi-MOFs. Three reaction kinetic processes such as surface adsorption, photocatalytic reduction, and disproportionation are revealed by combining the time-lapsed DFM images with optical absorption spectra, indicating that the photocatalytic reduction of purple MnO4- first produces beige red MnO42- through a one-electron pathway, and then MnO42- disproportionates into yellow MnO2 on CAU-17. Meanwhile, we observe that the deposition of MnO2 cocatalysts enhances the surface adsorption reaction and the photocatalytic reduction of MnO4- to MnO42-. Unexpectedly, it is found that isopropanol as a typical hole scavenger can stabilize MnO42-, avoiding disproportionation and causing the alteration of the photocatalytic reaction pathway from a one-electron avenue to a three-electron (1 + 2) process for producing MnO2 on CAU-17. This research opens up the possibility of comprehensively tracking and understanding the photocatalytic degradation reaction at the single MOF particle level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call