Abstract
AbstractThe morphology of the photoactive layer plays an important role in both the photoelectric effect and device performance of solution‐processed organic solar cells (OSCs). Optimizing the morphology requires precise control over the complex film formation kinetics, which are influenced by a range of factors from the solution state to the solid‐film state. This review delves into the in situ characterization technologies employed to understand the active layer formation process and explores strategies for controlling film formation during key stages, including solution aggregation, nucleation, crystal growth, and phase separation. Special attention is given to the mechanism by which these strategies enable real‐time morphology control during the printing process and their potential to facilitate direct printing of active layers with optimized morphology. The goal is to offer valuable insights and guidance for managing film formation kinetics in solution‐processed OSCs, ultimately addressing the challenges of real‐time morphology control in scale‐up printing and paving the way for high‐throughput production of post‐processing‐free devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.