Abstract

Surface enhanced infrared absorption spectroscopy (SEIRAS) has been employed to monitor the orientated assembly of a strep-tagged membrane protein on the gold surface via a streptavidin/biotin interlayer. The high surface sensitivity of SEIRAS allows for tracking the individual assembling steps on the molecular level. The sequence of surface modification steps comprises: (i) cross-linking of biotin to the self-assembled monolayer of cysteamine along the gold surface; (ii) adsorption of streptavidin to and desorption from the biotin layer; and (iii) adsorption of the strep-tagged membrane protein ecgltP (glutamate transporter of E. coli) on the streptavidin/biotin layer. The analysis of the SEIRA spectra reveals that the biotin layer undergoes a phase transition from an isotropic orientation to a densely packed layer during coupling to the cysteamine monolayer. Formation of the densely packed layer weakens the interaction between streptavidin and the biotin layer but yields a binding specificity of 80%. The specificity of strep-tagged ecgltP to the streptavidin layer is with 60% only modest. Nevertheless, the streptavidin/biotin interlayer reveals a higher regeneration propensity than the His-tag/Ni-NTA interlayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.