Abstract

The generation of complex nanostructures to obtain novel characteristics and improved performance has been achieved by coupling multiple nanoscale reactions. Because reactions at the nanometer scale directly govern the morphology of nanostructures, understanding the reaction mechanism is critical to precisely control the morphology and, eventually, the physicochemical properties of the materials. However, because of the ensemble-average effect, investigating the reaction mechanism at the bulk level does not provide sufficient information. In this study, we investigated the overall sulfidation reaction mechanism that occurred on individual silver nanocubes in real time at high temperature. Using the single-particle dark-field imaging technique, three discrete steps of the sulfidation reaction were clearly resolved in the profiles of the plasmon peak shift and the intensity change of individual particles according to time progress: (I) reactant diffusion to the silver surface by passing through a ligand bar...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.