Abstract

Combined measurements of piezoelectric quartz crystal impedance (PQCI) and electrochemical impedance spectrum (EIS) using a suitable isolation capacitance is reported for the first time to monitor in situ adsorption and acidic denaturation of human serum albumin (HSA) on gold electrodes in Britton–Robinson (B–R) buffers. This method provides simultaneously mutual-interference-free and accurate parameters of EIS and PQCI. Effects of surface thiol-modification, electrode-potential and solution pH on HSA adsorption were examined and discussed. Comparative experiments of HSA adsorption in a B–R buffer of pH 6.42 on bare, cysteine- and 1-dodecanethiol-modified gold electrodes revealed that HSA adsorption is more significant on a hydrophobic (1-dodecanethiol-modified) surface. Insignificant electrode-potential effect implied minor electrostatic effects on HSA adsorption. The adsorption amount of HSA at pH 3.28 was found to be notably greater than those at pH 4.84 and 6.42. To characterize HSA adsorption, electrode standard rate constants ( k s) of the Fe(CN) 6 3−/Fe(CN) 6 4− couple were measured before and after HSA adsorption. The k s-pH curves on an HSA-modified Au electrode revealed that k s increased abruptly with the decrease of solution pH below pH ∼4. Moreover, pH-dependent responses of the resonant frequency, the motional resistance, the double-layer capacitance, the capacitance of adsorbed HSA layer and the peak absorbance of HSA solutions at 278 nm all exhibited an inflexion change at pH ∼4, and these findings have been explained on the basis of acidic denaturation of HSA and electrical charges carried by HSA molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call