Abstract
The analytical possibilities of laser induced breakdown spectroscopy (LIBS) to carry out in-situ and real-time detection and compositional characterization of aerosols in the atmosphere of a steelmaking factory, have been evaluated. To this aim, a compact and versatile dual-pulse LIBS analyzer, able to sample at distances up to eight meters, has been designed to work in these hostile industrial environments. Due to the discrete nature of the particulate matter, the particle sampling rate was less than 2.5% and 6% for single- and double-pulse regimes, respectively. An efficient statistical procedure, based on the calculation of standard deviations, is used to qualitatively characterize the elemental composition of the aerosol. Then, a conditional analysis based on the limit of detection, is employed to assess the elemental sampling rate. This experimental methodology has been used to evaluate the influence on the aerosol formed of the oxycutting process in a continuous casting machine producing steel slabs, revealing a strong presence of elements derived from the casting powder used in the production. Moreover, chromium, present in the steel cast, is detected in aerosol suspension in the steel shop. An increase in the concentration of particulate matter was expected when oxycutting was on. Single-pulse and dual-pulse excitation modes are also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.