Abstract

ABSTRACTIn situ mineralization of hydroxyapatite (HAP) and the role of organics in initial nucleation and growth of HAP is critical for the resulting nano and microstructure of HAP. In situ mineralization of hydroxyapatite (HAP) in the presence of Ca binding polymers such as polyacrylic acid has shown some promise towards improvement of mechanical response of uniaxial compressed HAP/polymer composites to loading. This work represents fundamental studies on the nature of in situ HAP precipitation on resulting microstructure of the composite and bulk mechanical properties. Specifically, an experimental study, evaluating the role of initial stage mineralization of HAP on bulk mechanical responses is conducted. Fourier transform infrared (FT-IR) spectroscopic (with micro attenuated total reflectance) techniques are utilized to evaluate the association of polymer (polyacrylic acid) with HAP during mineralization of HAP. In situ HAP exhibits a faster mineralization as compared to the ex situ mineralization samples, This improved kinetics is responsible for altering the resulting micro and nanostructure of the HAP/polymer composite. Small spectral changes are detected in the absorbance spectra of in situ HAP as compared to ex situ samples. Changes in mechanical response to loading included improvement in strain-to-failure and resulting toughness characteristics of the in situ composite. The control and development of molecular-level associations of polymer with HAP is suggested to be critical for the resulting macro properties. Our results may have significant implications for design of nanocomposites for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call