Abstract

Adaptive x-ray mirrors are emerging as one of the primary solutions for meeting the performance needs of the next generation of x-ray light sources. Currently, these mirrors operate open loop with intermittent feedback from invasive sensors that measure the beam quality. This paper outlines a novel design for real-time in situ metrology of the shape of these mirrors using an array of interferometric sensors that does not interrupt the x-ray beam. We describe a proof-of-principle demonstration which shows sub-nm agreement over a range of mirror deflection magnitudes and shapes as compared to simultaneous measurements by using a large-aperture Fizeau interferometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call