Abstract

The N-methyl-D-aspartate (NMDA) receptor is a crucial mediator of pathological glutamate-driven excitotoxicity and subsequent neuronal death in acute ischemic stroke. Although the roles of the NMDAR's composite GluN2A-C subunits have been investigated in this phenomenon, the relative importance of the GluN2D subunit has yet to be evaluated. Herein, GluN2D-/- mice were studied in a model of ischemic stroke using MALDI FT-ICR mass spectrometry imaging to investigate the role of the GluN2D subunit of the NMDA receptor in brain ischemia. GluN2D-/- mice underwent middle cerebral artery occlusion (MCAO) and brain tissue was subsequently harvested, frozen, and cryosectioned. Tissue sections were analyzed via MALDI FT-ICR mass spectrometry imaging. MALDI analyses revealed increases in several calcium-related species, namely vitamin D metabolites, LysoPC, and several PS species, in wild-type mouse brain tissue when compared to wild type. In addition, GluN2D-/- mice also displayed an increase in PC, as well as a decrease in DG, suggesting reduced free fatty acid release from brain ischemia. These trends indicate that GluN2D-/- mice show enhanced rates of neurorecovery and neuroprotection from ischemic strokes compared to wild-type mice. The cause of neuroprotection may be the result of an increase in PGP in knockout mice, contributing to greater cardiolipin synthesis and decreased sensitivity to apoptotic signals. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call