Abstract

High entropy alloys (HEAs), as a new kind of alloys with equi- or near equi-atomic alloy compositions, have recently received increased interest, but their mechanical properties at micro- and nanoscales are less studied, which could hinder their structural/functional applications in the small scales. In this work, the mechanical responses of single crystalline FCC-structured CoCrCuFeNi HEA micro- and nano-pillars were systematically investigated by an in situ SEM nanoindenter. The yield strengths of the HEA micro-/nano-pillars under uniaxial compression appear to be size-dependent (with the m value of ∼0.46 in the Hall-Petch law relationship), but less sensitive when compared to typical metal/alloy micro- and nano-structures (e.g. with the m values of 0.6–0.9 for FCC metals). We also observed and analyzed the slip systems of the plastically deformed micro-/nano-pillars, and discussed their deformation mechanisms together with the Young’s modulus by multiple loading/unloading compressions experiments. Our results could provide useful insights in the design and application of HEA for functional micro- and nano-devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.