Abstract
We report the development of a novel measurement system designed to measure bubble properties in bubble curtains (i.e. planar bubble plumes) in situ alongside acoustical measurements. Our approach is based on electrical, contact-based needle sensors in combination with an optical system. The latter is used for calibration and validation purposes. Correcting for the insensitive distance of the needle tips yields very good agreement between the two approaches in terms of the local void fraction and bubble size distributions. Finally, the system is employed to study bubble plumes evolving from three different hose types. All hoses display consistent self-similar behaviour with spreading rates increasing with increasing gas flow. The spreading is further found to be significantly higher when the bubble plumes originated from a porous hose compared to the two other hose types featuring either discrete holes or nozzle elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.