Abstract
AbstractA newly developed hammer was used to insert two autonomous probes 0.8 m and 2.1 m into clast-rich subglacial till under Black Rapids Glacier, Alaska, USA. Both probes were instrumented with a dual-axis tilt sensor and a pore-water pressure transducer. The data are compared to a 75 day record of surface velocities. Till deformation at depth was found to be highly seasonal: it is significant during an early-season speed-up event, but during long periods thereafter measured till deformation rates are negligible. Both tilt records show rotation around the probe axis, which indicates a change in tilt direction of about 30°. The tilt records are very similar, suggesting spatial homogeneity on the scale of the probe separation (4 m horizontal and 3.3 m vertical). There is evidence that during much of the year sliding of ice over till or deformation of a thin till layer (<20 cm) accounts for at least two-thirds of total basal motion. Basal motion accounts for 50–70% of the total surface motion. The inferred amount of ice–till sliding is larger than that found at the same location in a previous study, when surface velocities were about 10% lower. We suggest that variations in ice–till coupling account for the observed variations in mean annual speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.