Abstract

A diode-laser-based sensor has been developed to measure nitric oxide mole fractions using absorption spectroscopy. The sensor is based on sum-frequency mixing of a 395 nm external-cavity diode laser (ECDL) and a 532 nm laser in a beta-barium-borate crystal. Using a new tuning scheme, the GaN ECDL wavelength was modulated over 90 GHz without mode hops. The sensor was applied for measurements of the NO mole fraction in the exhaust of a laboratory-scale, 30 kW(t) coal-fired boiler burner. Absorption measurements were successfully performed despite severe attenuation by scattering from ash particles in the exhaust stream and on the exhaust-section windows. A detection limit (1sigma) of 4.5 ppm m/(square root)Hz at 700 K was demonstrated in coal- combustion exhaust at a maximum detection rate of 5 Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call