Abstract

The transient photoconductivity decay rate is monitored on crystalline silicon samples in-situ during the heating of the samples up to 250°C and subsequent cooling by measuring the changes in the microwave reflection of the silicon sample following laser pulse illumination. An irreversible change of the excess charge carrier lifetime is found, showing a much slower decay after the first heating to 250°C. Subsequent thermal cycles show only a weak temperature dependence of the excess charge carrier decay rate at different temperatures. The strong dependence of this effect on the wavelength of the exciting laser indicates that the effect is caused by a modification of a near surface region of the crystalline silicon. The dependence of the signal amplitude on the measurement temperature is used to derive the temperature dependence of the sum of the electron and hole mobilities in the crystalline silicon. Wahrend des Heizens von kristallinem Silizium auf 250°C und anschliesendem Abkuhlen auf Raumtemperatur wird in-situ die uberschusladungstragerkinetik mittels Messung der transienten Mikrowellenreflektion nach Laserpulsanregung verfolgt. Mit ansteigender Substrattemperatur wird wahrend des ersten Heizens ein kontinuierliches Anwachsen der Ladungstragerlebensdauer gefunden, wohingegen beim anschliesenden Abkuhlen nur eine geringe Temperaturabhangigkeit der Ladungstragerlebensdauer beobachtet wird. Die Abhangigkeit dieses irreversiblen Prozesses von der Wellenlange des anregenden Lichtes deutet auf eine Modifikation der Oberflache des kristallinen Siliziums hin. Des weiteren wird mittels der Messung der Amplitude des transienten Mikrowellenreflektionssignals wahrend des Abkuhlens die Temperaturabhangigkeit der Summe von Elektronen- und Locherbeweglichkeit bestimmt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.