Abstract

As a part of the EAST‐AIRE study, Nuclepore filters were collected in two size ranges (coarse, 2.5 μm < d < 10 μm, and fine, d < 2.5 μm) from January to May 2005 in Xianghe, about 70 km southeast of Beijing, and analyzed for aerosol mass concentration, spectral absorption efficiency and absorption coefficient. Twelve‐hour aerosol mass concentration measurements showed an average concentration of 120 μg/m3 in the coarse mode and an average concentration of 25 μg/m3 in the fine mode. To determine how representative ground‐based measurements are of the total column, the mass concentration data was compared with AERONET AOT at 500 nm and AERONET size distribution data. The vertical distribution of the aerosols were studied with a micropulse lidar and in the cases where the vertical column was found to be fairly homogenous, the comparisons of the filter results with AERONET agreed favorably, while in the cases of inhomogeneity, the comparisons have larger disagreement. For fine mode aerosols, the average spectral absorption efficiency equates well to a λ−1 model, while the coarse mode shows a much flatter spectral dependence, consistent with large particle models. The coarse mode absorption efficiency was compatible with that of the fine mode in the NIR region, indicating the much stronger absorption of the coarse mode due to its composition and sizable mass. Single scattering albedo results are presented from a combination between absorption coefficients derived from the filter measurements, from a PSAP and from a three‐wavelength Nephelometer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.