Abstract
Axial and radial temperature profiles within the wafer load of a multiwafer LPCVD furnace were measured in situ using a pair of instrumented wafers. The measurements confirm that the wafer load is not in thermal equilibrium with the furnace tube, as has been widely assumed in many modeling studies. The measurements confirm temperature variations predicted previously from a study of polysilicon film thickness profiles. Temperature variations were small for wafers near the center of the 150-wafer load. However, axial variations of up to 25 degrees C and radial variations of up to 5 degrees C were measured at the extremes of the wafer load. For a representative polysilicon deposition data set, axial and radial thin-film thickness variations were found to correlate closely with measured temperature variations. The temperature profile was found to be insensitive to gas composition and flowrate, establishing radiation as the dominant mode of heat transfer. A pair of polysilicon coated quartz radiation shields was shown to improve polysilicon film thickness uniformity both down the load (along the furnace axis) and across each wafer.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.