Abstract

To clarify the mechanism of combined phenomena of heat, mass and electric charge transfers in a single-cell polymer electrolyte fuel cell (PEFC), it is necessary to measure in-plane temperature distribution of a single-cell PEFC when it is run, i.e., generating power. The measurement by thermograph assists to investigate the influence of gas flow rate at inlet and gas channel pitch of separator on in-plane temperature distribution and power generation performance. As a result, the higher temperature region is observed near the outlet of cell when the excess ratio of gas flow is set due to the convective heat transfer by excess oxygen flow in gas channel at the cathode. When the gas flow is set at stoichiometric, in-plane temperature distribution becomes even and high power generation performance can be achieved. The other observation is that the total voltage is increased and temperature in observation area is dropped with decreasing gas channel pitch of separator irrespective of gas flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.