Abstract

Understanding the internal water distribution in proton exchange membrane fuel cell (PEMFC) is critical to the development of high-performance PEMFCs. In this study, the cathode flow field is divided into 9 areas, and the relative humidity under different conditions is measured in-situ by using microsensors embedded in the cathode flow field plate. Polarization curves are measured and electrochemical impedance spectroscopy is carried out under different conditions. The results show that the relative humidity has a significant effect on the internal resistance of PEMFCs. When the inlet gas is not humidified, too high of a temperature will lead to low relative humidity and membrane dehydration. Increasing pressure and cathode humidification can alleviate this problem. However, the relative humidity of the outlet area is close to 100% when the cathode back pressure is 100 kPa, and a too high relative humidity will result in flooding in the cathode channel. Moreover, the degree of corrosion of the carbon support in the catalyst is closely related to the water concentration in the cathode, and the water management downstream of the flow field is particularly important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.