Abstract

Dimensional changes in carbon-based supercapacitor electrodes were investigated using a combination of electrochemical dilatometry and in situ small-angle X-ray scattering. A novel hierarchical carbon material with ordered mesoporosity was synthesized, providing the unique possibility to track electrode expansion and shrinkage on the nanometer scale and the macroscopic scale simultaneously. Two carbons with similar mesopore structure but different amounts of micropores were investigated, employing two different aqueous electrolytes. The strain of the electrodes was always positive, but asymmetric with respect to positive and negative applied voltages. The asymmetry strongly increased with increasing microporosity, giving hints to the possible physical origin of electrosorption induced pore swelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.