Abstract
Strain measurements by neutron diffraction are employed as an in situ technique to obtain insight into the deformation modes of crystalline domains in a deformed semi-crystalline polymer. The SMARTS (Spectrometer for MAterials Research at Temperature and Stress) diffractometer has been used to measure the crystalline lattice displacements in polytetrafluoroethylene (PTFE) for crystalline phase IV (at room temperature) in tension and compression and for crystalline phase I (at 60°C) in compression. The chemical structure of PTFE, -(C2F4)-n, makes it ideally suited for investigation by neutron methods as it is free of hydrogen that results in limited penetration depths and poor diffraction acquisition in most polymers. Deformation parallel to the prismatic plane normals is shown to occur by inter-polymer chain compression with a modulus ∼10× bulk, while deformation parallel to the basal plane normal occurs by intra-polymer chain compression with a modulus ∼1000× bulk, corresponding with theoretical values for a PTFE chain modulus. Deformation parallel to the pyramidal plane normals is accommodated by inter-polymer chain shear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.