Abstract

Water column primary production is a major term in the organic carbon cycle, particularly in large lakes with relatively reduced shoreline and near-shore influence. Presently, there is a large imbalance in the known inputs vs. outputs of organic carbon in Lake Superior. This study examined primary production in offshore Lake Superior using in situ incubations over a range of conditions representing an annual cycle. Primary producers were dominated by small (< 20 μm) cells and included a relatively large abundance of small, spherical flagellates. During conditions with a warm surface layer, chlorophyll concentrations were two- to three-fold higher within the deep chlorophyll maximum (DCM) than at the surface. Volumetric production (mass L − 1 d − 1 ) was maximal at 2-10 m depth, well above the typical DCM depth. On average, 22% of 14C label appeared in the dissolved pool at the end of the incubation period with the rest appearing in GF/F-strained particles. A statistical model for volumetric production explained 93% of the variance in individual measurements for depths > 2 m, using temperature and light as predictors. This model was applied to annual fields of temperature and light, and a new estimate for whole-lake annual primary production, 9.73 Tg y − 1 , was derived. This combination of new measurements and modeling results brings the organic carbon cycle of Lake Superior closer to being balanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call