Abstract

Objective 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is widely used for noninvasive imaging of atherosclerosis. However, knowledge about metabolic processes underlying [18F]FDG uptake is mostly derived from in vitro cell culture studies, which cannot recapitulate the complexities of the plaque microenvironment. Here, we sought to address this gap by in situ mapping of the activity of selected major dehydrogenases involved in glucose metabolism in atherosclerotic plaques. Methods In situ activity of lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6PD), succinate dehydrogenase (SDH), and isocitrate dehydrogenase (IDH) was assessed in plaques from murine aortic root and brachiocephalic arteries and human carotid arteries. High-resolution 2-deoxy-D-[1,2-3H]glucose ([3H]2-deoxyglucose) autoradiography of murine brachiocephalic plaques was performed. Results LDH activity was heterogeneous throughout the plaques with the highest activity in medial smooth muscle cells (SMCs). G6PD activity was mostly confined to the medial layer and to a lesser extent to SMCs along the fibrous cap. SDH and IDH activities were minimal in plaques. Plaque regions with increased [3H]2-deoxyglucose uptake were associated with a modestly higher LDH, but not G6PD, activity. Conclusions Our study reveals a novel aspect of the metabolic heterogeneity of the atherosclerotic plaques, enhancing our understanding of the complex immunometabolic biology that underlies [18F]FDG uptake in atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.